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Abstract

The paper is concerned with the numerical solution of an inviscid compressible flow with the aid of the discontinuous

Galerkin finite element method. Since the explicit time discretization requires a high restriction of the time step, we

propose semi-implicit numerical schemes based on the homogeneity of inviscid fluxes, allowing a simple linearization of

the Euler equations which leads to a linear algebraic system on each time level. Numerical experiments performed for

the Ringleb flow problem verify a higher order of accuracy of the presented method and demonstrate lower CPU-time

costs in comparison with an explicit method. Then the method is tested on more complex unsteady Euler flows.
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1. Introduction

Our goal is to develop a sufficiently accurate, efficient and robust numerical method for the solution of

an inviscid compressible flow, which is described by the system of the Euler equations. These nonlinear

conservation laws have solutions with discontinuities and their approximations by conforming finite
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elements (FE) suffer from the Gibbs phenomenon. From this point of view, it seems that for conservation

laws with discontinuous solutions, the finite volume (FV) method [19,31] using piecewise constant ap-

proximations is more suitable, because the FV approximations are discontinuous on interelement inter-
faces, which allows better resolution of shock waves and contact discontinuities. On the other hand, the

increase of accuracy in finite volume schemes applied on unstructured and/or anisotropic meshes seems to

be problematic.

A combination of ideas and techniques of the FV and FE methods yields the discontinuous Galerkin finite

element method (DGFEM) using advantages of both approaches and allowing to obtain schemes with a

higher order accuracy in a natural way. DGFEM is based on the approximation of the solution of an

initial-boundary value problem by piecewise polynomial functions over a finite element mesh without any

requirement on interelement continuity. DGFEM was applied to nonlinear conservation laws already in
1989 by Cockburn and Shu [10]. It was used for the numerical simulation of the compressible Euler

equations later by Bassi and Rebay in [2], where the space DG discretization is combined with explicit

Runge–Kutta time discretization. In [4] Baumann and Oden describe an hp version of the space DG dis-

cretization with explicit time stepping to compressible flow. Van der Vegt and van der Ven apply space–

time discontinuous Galerkin method to the solution of the Euler equations in [39,40]. Here the discrete

problem is solved with the aid of a multigrid accelerated pseudo-time-integration. During several recent

years the DGFE schemes have been extensively developed and become more and more popular. Some

aspects of the DGFEM and applications to gas dynamics are discussed in [1,7,14–18,21]. For a survey see,
e.g. [9,11].

In all cited works except [39,40] explicit Euler or Runge–Kutta time discretization is used. Explicit time

stepping for the solution of the Euler equations is very popular particularly in the framework of the finite

difference and finite volume schemes. Its advantage is a simple algorithmization. However, it requires to

satisfy rather restrictive CFL-stability conditions, which is quite inconvenient over nonuniform unstruc-

tured anisotropic meshes. Therefore, it is suitable to consider implicit methods for the numerical solution of

the Euler equations as well. It is well known that the use of implicit methods contributes to an improvement

of the efficiency of numerical schemes for solving the Euler equations in some cases, because implicit
methods permit to use longer time steps.

In the framework of the finite volume methods implicit schemes were used, for example in [26,32,37]. The

drawback of the implicit schemes is the necessity to solve a large nonlinear algebraic system on each time

level. To this end, the Newton method is often applied leading to a sequence of linear discrete problems.

One variant of this approach is a well-known D-scheme by Beam and Warming [5,6] (see also [29]). This

approach is often combined with multigrid techniques (see, e.g., [12,28,30]). The application of the Newton-

like schemes requires of course the differentiability of the numerical flux and the computation of its partial

derivatives, which is usually rather complicated. This is the reason that some authors use artificial pseudo-
time-integration as was applied together with multigrid in [39,40] for the DG discrete problem. The mul-

tigrid techniques require, of course, the use of structured meshes and, in the case of the mesh refinement, a

sequence of nested meshes. This is not the case when the anisotropic mesh adaptation (AMA) method is

used. Then algebraic multigrid would have to be applied, but its efficiency is not so high. Therefore, one

often uses the Krylov subspace methods for the solution of linear systems in linearized schemes for the

Euler equations (cf., e.g., [32]).

The goal of this paper is to develop a sufficiently accurate, efficient and robust method for the numerical

solution of the nonstationary Euler equations applicable on unstructured meshes obtained with the aid of
the AMA technique. We propose semi-implicit DGFE schemes, based on the homogeneity of the inviscid

fluxes and properties of the Vijayasundaram numerical flux, leading in a natural way to a linear system on

each time level. This approach is combined with a first- or second-order time stepping. The linear algebraic

systems are solved by the GMRES method. The described method is not based on the Newton lineari-

zation, does not require to differentiate the numerical flux and can be applied on arbitrary meshes. It is
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practically unconditionally stable. This fact allows us to use the method also for the solution of the sta-

tionary Euler equations via time stabilization for ‘‘t ! 1’’, using very large time steps.

The contents of the paper is the following. In Section 2, the initial-boundary value problem for the Euler
equations is formulated and some properties of the Euler equations are mentioned. In Section 3, we carry

out the discretization of the problem with the aid of a semi-implicit DGFEM and a first- or second-order

time discretization. Section 4 contains a detailed description of the implementation of the method. Nu-

merical examples demonstrating the accuracy and efficiency of the scheme are given in Section 5. The

summary of results and outlook are contained in Section 6.
2. Governing equations

The system of the Euler equations describing 2D inviscid flow can be written in the form

ow

ot
þ
X2

s¼1

of sðwÞ
oxs

¼ 0 in QT ¼ X� ð0; T Þ; ð1Þ

where X � R2 is a bounded domain occupied by gas, T > 0 is the length of a time interval,

w ¼ ðw1; . . . ;w4ÞT ¼ ðq; qv1;qv2; eÞT ð2Þ

is the state vector and

f sðwÞ ¼ ðf 1
s ðwÞ; . . . ; f 4

s ðwÞÞ ¼ ðqvs; qvsv1 þ ds1p; qvsv2 þ ds2p; ðeþ pÞvsÞT; s ¼ 1; 2; ð3Þ

are the inviscid (Euler) fluxes. We use the following notation: q – density, p – pressure, e – total energy,

v ¼ ðv1; v2Þ – velocity, dsk – Kronecker symbol (if s ¼ k, then dsk ¼ 1, else dsk ¼ 0). The equation of state

implies that

p ¼ ðc� 1Þðe� q j v j2 =2Þ: ð4Þ

Here c > 1 is the Poisson adiabatic constant.The system (1)–(4) is hyperbolic. It is equipped with the initial

condition

wðx; 0Þ ¼ w0ðxÞ; x 2 X; ð5Þ

and the boundary conditions

BðwÞ ¼ 0 on oX� ð0; T Þ; ð6Þ

chosen in such a way that problem (1)–(6) is linearly well–posed (see, e.g. [24, Section 3.3.6]). To this end,

the boundary oX is formed by disjoint parts CIO and CW representing the inflow/outflow and impermeable

walls, respectively. On CW we prescribe the impermeability condition

v � n ¼ 0 on CW; ð7Þ

where n denotes the unit outer normal to oX. In order to determine boundary conditions on CIO, we define

the matrix

Pðw; nÞ :¼
X2

s¼1

AsðwÞns; ð8Þ
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where n ¼ ðn1; n2Þ 2 R2, n21 þ n22 ¼ 1 and

AsðwÞ ¼
Df sðwÞ
Dw

; s ¼ 1; 2; ð9Þ

are the Jaccobi matrices of the mappings f s. Then we prescribe mn quantities characterizing the state vector

w, where mn is the number of negative eigenvalues of the matrix Pðw; nÞ and extrapolate mp quantities of w
from interior of X, where mp ¼ 4� mn is the number of nonnegative eigenvalues of Pðw; nÞ. For details, see,
e.g., [20] or [24].

Using relations (2)–(4), we express the fluxes f s, s ¼ 1; 2, in terms of the variables w1; . . . ;w4 in the form

f sðwÞ ¼

wsþ1

wsþ1w2

w1
þ ds1ðc� 1Þ w4 �

w2
2
þw2

3

2w1

� �
wsþ1w3

w1
þ ds2ðc� 1Þ w4 �

w2
2
þw2

3

2w1

� �
wsþ1

w1
cw4 � ðc� 1Þ w2

2
þw2

3

2w1

� �

0
BBBBB@

1
CCCCCA; s ¼ 1; 2: ð10Þ

Obviously, f s, s ¼ 1; 2, are homogeneous mappings of order one, i.e.,

f sðawÞ ¼ af sðwÞ; a 2 R; a 6¼ 0; i ¼ 1; 2: ð11Þ

Then it is easy to show (see [20], p. 432) that

f sðwÞ ¼ AsðwÞw; s ¼ 1; 2: ð12Þ
3. Discretization

3.1. Broken Sobolev space

In what follows we use the standard notation for function spaces: HkðXÞ is the Sobolev space and

C1ð0; T ;X Þ is the space of continuously differentiable mappings on ½0; T � with values in X .

Let Xh be a polygonal approximation of X. In order to derive the discrete problem, we consider a mesh
Th of Xh consisting of various types of convex elements Ki 2 Th, i 2 I (I � Zþ ¼ f0; 1; 2; . . .g is a suitable

index set), e.g., triangles, quadrilaterals or in general convex polygons.

By Cij we denote a common edge between two neighbouring elements Ki and Kj. The symbol

nij ¼ ððnijÞ1; ðnijÞ2Þ denotes the unit outer normal to oKi on the side Cij. Moreover, we set

sðiÞ ¼ fj 2 I ;Kj is a neighbour of Kig. The boundary oXh is formed by a finite number of faces of elements

Ki adjacent to oXh. We denote all these boundary faces by Sj, where j 2 Ib � Z� ¼ f�1;�2; . . .g. Now we

set cðiÞ ¼ fj 2 Ib; Sj is a face of Ki 2 Thg and Cij ¼ Sj for Ki 2 Th such that Sj � oKi, j 2 Ib: For Ki not

containing any boundary face Sj we set cðiÞ ¼ ;. Obviously, sðiÞ \ cðiÞ ¼ ; for all i 2 I . Now, if we write
SðiÞ ¼ sðiÞ [ cðiÞ, we have

oKi ¼
[
j2SðiÞ

Cij; oKi \ oXh ¼
[
j2cðiÞ

Cij: ð13Þ

Moreover, we define the subsets cIOðiÞ and cWðiÞ of cðiÞ such that faces Cij, j 2 cIOðiÞ, approximate CIO

and Cij, j 2 cWðiÞ, approximate CW.

We define the so-called broken Sobolev space

HkðX; ThÞ ¼ fv; v jK2 HkðKÞ 8K 2 Thg: ð14Þ
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If v 2 HkðX; ThÞ, then

vjCij
6¼ vjCji

; ð15Þ

in general, where vjCij
and vjCji

denote the values of v on Cij considered from the interior and the exterior of

Ki, respectively.

In order to derive the discrete problem, we multiply (1) by a test function u 2 H 1ðX; ThÞ½ �4, integrate over
any element Ki; i 2 I , apply Green�s theorem and sum over all i 2 I . In this way we obtain the integral

identity

o

ot

X
Ki2Th

Z
Ki

w � udx ¼
X
Ki2Th

Z
Ki

X2

s¼1

f sðwÞ �
ou

oxs
dx�

X
Ki2Th

X
j2SðiÞ

Z
Cij

X2

s¼1

f sðwÞ � uðnijÞs dS; ð16Þ

which represents a weak form of the Euler equations in the sense of the broken Sobolev space H 1ðX; ThÞ.

3.2. Numerical solution

Now we shall introduce the discrete problem approximating identity (16) with the aid of the discon-
tinuous Galerkin finite element method.

To evaluate the boundary integrals in (16) we use the approximation

Z
Cij

X2

s¼1

f sðwðtÞÞðnijÞs � udS �
Z
Cij

HðwðtÞjCij
;wðtÞjCji

; nijÞ � udS; ð17Þ

where H is a numerical flux, wðtÞjCij
and wðtÞjCji

are the values of w on Cij considered from the interior and

the exterior of Ki, respectively, and at time t. It is necessary to specify the meaning of wðtÞjCji
for j 2 cðiÞ.

Taking into account the boundary conditions on CIO described above and following [20, Section 7.3.43] or
[24, Section 3.6.6], we prescribe mn components of w on Cij and extrapolate mp components from the in-

terior of Ki to Cij. Thus, we define wjCji
¼ ðw1;w2;w3;w4ÞjCji

by

wljCji
¼ gl if the lth component of w is prescribed;

wljCij
if the lth component of w is extrapolated;

�
l ¼ 1; . . . ; 4; j 2 cIOðiÞ; ð18Þ

where g ¼ ðg1; g2; g3; g4Þ is a given state vector. For details, see, e.g. [20] or [24].

If j 2 cWðiÞ, then we use the impermeability condition (7) and replace (17) by the approximationZ
Cij

HðwðtÞjCij
;wðtÞjCji

; nijÞ � udS :¼
Z
Cij

FWðwðtÞ; nijÞ � udS; j 2 cWðiÞ; ð19Þ

where

FWðw; nÞ � 0; pn1; pn2; 0ð ÞT: ð20Þ

The pressure p is expressed in the form

p ¼ ðc� 1Þðw4 � ðw2
2 þ w2

3Þ=ð2w1ÞÞ; ð21Þ

following from (4) and (2) and extrapolated on Cij from Ki and n ¼ ðn1; n2Þ ¼ nij.
Let us note that the choice of a suitable numerical flux plays an important role, particularly in finite

volume schemes. We can mention, e.g. the well-known Steger-Warming, Van Leer, Roe and Vijayasun-

daram numerical fluxes or the numerical fluxes based on the direct Riemann solver of the Euler equations

(for more details and references, see [24] or [38]). As for efficiency and robustness, we can recommend the
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Osher–Solomon numerical flux (see [25,33,36] or [24, Section 3.4]), which we applied with a great success,

e.g. in [22,23].

An approximate solution is sought at each time instant t as an element of the space of discontinuous
piecewise polynomial functions

Sh � Sp;�1ðXh; ThÞ ¼ fv; v jK2 PpðKÞ 8K 2 Thg; ð22Þ
where pP 0 is an integer and PpðKÞ denotes the space of all polynomials on K of degree 6 p. For

wh;uh 2 ½Sh�4 we introduce the forms

ðwh;uhÞh ¼
Z
Xh

whðxÞ � uhðxÞdx;

~bhðwh;uhÞ ¼ �
X
K2Th

Z
K

X2

s¼1

f sðwhðxÞÞ �
ouhðxÞ
oxs

dxþ
X
Ki2Th

X
j2SðiÞ

Z
Cij

HðwðtÞjCij
;wðxÞjCji

; nijÞ � uh dS: ð23Þ

We say that wh is the approximate solution of (1), if it satisfies the conditions

ðaÞ wh 2 C1ð½0; T �; Sh½ �4Þ;

ðbÞ d

dt
whðtÞ;uhð Þh þ ~bhðwhðtÞ;uhÞ ¼ 0 8uh 2 ½Sh�4 8t 2 ð0; T Þ;

ðcÞ whð0Þ ¼ Phw
0;

ð24Þ

where Phw
0 is the L2-projection of w0 from the initial condition (5) on the space ½Sh�4. If we set p ¼ 0, then

we obviously obtain the finite volume method.

Relations (24), (b) represent a system of ordinary differential equations which can be solved by a suitable
numerical method. Usually, Runge–Kutta schemes are applied. Then we get conditionally stable methods

applicable under a severe restriction of the length of the time step due to the CFL-stability condition. Since

we are interested in numerical schemes not suffering from this drawback, we shall start from the time

discretization by the implicit backward Euler method. To this end, we consider a partition 0 ¼ t0 < t1 < t2 � � �
of the time interval ð0; T Þ and set sk ¼ tkþ1 � tk. We use the notation wk

h for the approximation of whðtkÞ.
Then the discrete problem reads: for each kP 0 find wkþ1

h such that

ðaÞ wkþ1
h 2 Sh½ �4;

ðbÞ wkþ1
h � wk

h

sk
;uh

� �
h

þ ~bhðwkþ1
h ;uhÞ ¼ 0 8uh 2 ½Sh�4; k ¼ 0; 1; . . . ;

ðcÞ w0
h ¼ Phw

0:

ð25Þ

Scheme (25) leads to a system of highly nonlinear algebraic equations whose numerical solution is rather

complicated. In order to simplify the problem, in the following we shall linearize relation (24), (b) and
obtain a linear system.

3.3. Linearization

By (23), for wkþ1
h ;uh 2 ½Sh�4 we have

~bhðwkþ1
h ;uhÞ ¼ �

X
K2Th

Z
K

X2

s¼1

f sðwkþ1
h ðxÞÞ � ouhðxÞ

oxs
dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:~r1

þ
X
Ki2Th

X
j2SðiÞ

Z
Cij

Hðwkþ1
h jCij

;wkþ1
h jCji

; nijÞ � uh dS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:~r2

:

ð26Þ
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The individual terms ~r1 and ~r2 will be linearized separately. For ~r1, we use the property (12) of the Euler

fluxes and use the approximation

~r1 � r1 ¼
X
K2Th

Z
K

X2

s¼1

Asðwk
hðxÞÞwkþ1

h ðxÞ � ouhðxÞ
oxs

dx: ð27Þ

The linearization of the term ~r2 can be carried out in a simple way, when H in (26) is chosen, for ex-

ample, as the Vijayasundaram numerical flux, see [41,20, Section 7.3] or [24, Section 3.3.4]. The matrix

Pðw; nÞ defined by (8) is diagonalizable: there exist matrices D and T such that

Pðw; nÞ ¼ TDT�1; D ¼ diagðk1; . . . ; k4Þ; ð28Þ

where k1; . . . ; k4 are the eigenvalues of P. We define the ‘‘positive’’ and ‘‘negative’’ part of P by

P�ðw; nÞ ¼ TD�T�1; D� ¼ diagðk�1 ; . . . ; k
�
4 Þ: ð29Þ

Then the Vijayasundaram numerical flux reads

HVSðw1;w2; nÞ ¼ Pþ w1 þ w2

2
; n

� �
w1 þ P� w1 þ w2

2
; n

� �
w2: ð30Þ

The form of HVS offers the linearized approximation

~r2 �
X
Ki2Th

X
j2SðiÞ

Z
Cij

Pþ hwk
hiij; nij

� �
wkþ1

h jCij

h
þ P� hwk

hiij; nij
� �

wkþ1
h jCji

i
� uh dS; ð31Þ

where

hwk
hiij � 1

2
wk

hjCij

�
þ wk

hjCji

�
: ð32Þ

It is necessary to specify the meaning of wkþ1
h jCji

for Cij � oXh. If j 2 cIOðiÞ, then we replace wkþ1
h jCij

in (31)

by the state wk
hjCij

determined in (18). For j 2 cWðiÞ, in virtue of (19), we use the approximation

Hðwkþ1
h jCij

;wkþ1
h jCji

; nijÞ � uh dS �
Z
Cij

FWðwkþ1
h ; nijÞ � udS; j 2 cWðiÞ; ð33Þ

where FW is given by (20). The vector FW is a nonlinear function of w and its linearization can be carried

out in two ways.

(a) Explicit way: we simply put

FWðwkþ1
h ; nÞ � ~FWðwk

h;w
kþ1
h Þ :¼ FWðwk

hjCij
; nÞ: ð34Þ

This term appears on the right hand side of the resulting system of algebraic equations.

(b) Implicit way: we use a linearization with the aid of the Taylor expansion as

FWðwkþ1
h ; nÞ � ~FWðwk

h;w
kþ1
h Þ :¼ FWðwk

h; nÞ þ DFWðwk
h; nÞ wkþ1

h

�
� wk

h

�
; ð35Þ

where

DFWðw; nÞ � ðc� 1Þ

0 0 0 0

ðv21 þ v22Þn1=2 �v1n1 �v2n1 n1
ðv21 þ v22Þn2=2 �v1n2 �v2n2 n2

0 0 0 0

0
BB@

1
CCA ð36Þ
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is obtained by the differentiation of function FW given by (20) with respect to w ¼ ðw1; . . . ;w4Þ. Here

n ¼ ðn1; n2Þ; vj ¼ wjþ1=w1; j ¼ 1; 2.
In the case (a), ~FW is independent of wkþ1

h jCij
, whereas in the case (b) it depends linearly on wkþ1

h jCij
. The

approach (a) is simpler for implementation, but the possibility (b) allows to use a significantly higher CFL-

number in the stability condition specified in (50). In both cases (a) and (b) we put

r2 ¼
X
Ki2Th

X
j2sðiÞ

Z
Cij

Pþ hwk
hiij; nij

� �
wkþ1

h jCij

h
þ P� hwk

hiij; nij
� �

wkþ1
h jCji

i
� uh dS

þ
X
Ki2Th

X
j2cIOðiÞ

Z
Cij

Pþ hwk
hiij; nij

� �
wk

hjCij

h
þ P� hwk

hiij; nij
� �

wk
hjCji

i
� uh dS

þ
X
Ki2Th

X
j2cWðiÞ

Z
Cij

~FWðwk
h;w

kþ1
h ; nijÞ � udS: ð37Þ

Finally, we define the form

bhðwk
h;w

kþ1
h ;uhÞ ¼ �r1 þ r2; ð38Þ

where r1 and r2 are given by (27) and (37), respectively. The form bh is linear with respect to the second and

third variable. Using (25) and (38) we arrive at the following semi-implicit linearized numerical scheme: for
each kP 0 find wkþ1

h such that

ðaÞ wkþ1
h 2 Sh½ �4;

ðbÞ wkþ1
h ;uh

� �
h
þ skbhðwk

h;w
kþ1
h ;uhÞ ¼ wk

h;uh

� �
h

8uh 2 ½Sh�4; k ¼ 0; 1; . . . ;

ðcÞ w0
h ¼ Phw

0:

ð39Þ

Scheme (39) is formally first-order accurate in time. In order to increase the accuracy of the time dis-

cretization, the following two-step second-order version of scheme (39) can be used: for each kP 0 find wkþ1
h

such that

ðaÞ wkþ1
h 2 Sh½ �4;

ðbÞ 2sk þ sk�1

skðsk þ sk�1Þ
wkþ1

h ;uh

� �
h
þ bhð~wkþ1

h ;wkþ1
h ;uhÞ

¼ sk þ sk�1

sksk�1

wk
h;uh

� �
h
� sk
skðsk þ sk�1Þ

wk�1
h ;uh

� �
h

8uh 2 ½Sh�4; k ¼ 0; 1; . . . ;

ðcÞ w0
h ¼ Phw

0; w�1
h ¼ w0

h;

ð40Þ

where

~wkþ1
h ¼ sk þ sk�1

sk�1

wk
h �

sk
sk�1

wk�1
h : ð41Þ

This scheme is obtained by using the approximation

ow

ot

				
t¼tkþ1

� 2sk þ sk�1

skðsk þ sk�1Þ
wkþ1

h � sk þ sk�1

sksk�1

wk
h þ

sk
skðsk þ sk�1Þ

wk�1
h ð42Þ

and the approximation (41) in the nonlinear part of the form bh. The extension of the algorithmization from

scheme (39) to (40) does not represents any difficulties and any significant increase of CPU time.
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In case that the time step is constant, i.e. sk ¼ s for all k ¼ 0; 1; . . ., formulae (42) and (41) reduce to

standard approximations

ow

ot

				
t¼tkþ1

� 3wkþ1
h � 4wk

h þ wk�1
h

2sk
ð43Þ

and

wkþ1
h � ~wkþ1

h ¼ 2wk
h � wk�1

h ; ð44Þ

respectively. Then (40), (b) is simplified in an obvious way.

As we see, the above schemes (39) and (40) are not of the D-scheme type. In schemes combined with the
realization (34) of the impermeable boundary conditions one does not need to express any Jacobian matrix.

In the case (35) with a more accurate realization of the boundary conditions on an impermeable wall, it is

necessary to evaluate the Jacobian matrix (36), which is quite simple.
3.4. Matrix representation

Let

uimn 2 Sh½ �4; n
n

¼ 1; . . . ; 4;m ¼ 1; . . . ;DOFðpÞ; i 2 I
o

ð45Þ

be a basis of ½Sh�4. Here DOFðpÞ denotes the number of degrees of freedom of functions / 2 Sh on one

element K 2 Th. For example, DOFð0Þ ¼ 1 for a piecewise constant approximation (finite volume method),

DOFð1Þ ¼ 3 for a piecewise linear approximation, DOFð2Þ ¼ 6 for a piecewise quadratic approximation,

etc. Then the dimension of the space ½Sh�4 is N ¼ 4 �DOFðpÞ � #Th, where #Th denotes the number of ele-
ments of Th. The state vector wk

h can be written in the form

wk
hðxÞ ¼

X
i2I

XDOFðpÞ

m¼1

X4

n¼1

akimnuimnðxÞ; x 2 X; k ¼ 0; 1; . . . ; ð46Þ

where akimn 2 R. Then the numerical schemes (39) and (40) have the following matrix representations

MðakÞakþ1 ¼ gðakÞ; ð47Þ

and

Mðak�1; akÞakþ1 ¼ gðak�1; akÞ; ð48Þ

respectively, where

ak ¼ fakimngn¼1;...;4;m¼1;...;DOFðpÞ;i2I 2 RN; ð49Þ

g : RN ! RN, g : R2N ! RN and MðaÞ, Mða; bÞ are N � N matrices for a; b 2 RN. The solutions of (47) and
(48) can be obtained by a suitable solver for sparse nonsymmetric systems. (For the application of various

linear solvers to the solution of inviscid flow with the finite volume method, see [32].)

In order to guarantee the stability of schemes (39) and (40), we use the following CFL condition

6sk max
Ki2Th

1

jKij
max
j2SðiÞ

jCijjkmax
Pðwk

hjCij ;nijÞ

� �
6CFL; ð50Þ
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where jKij denotes the area of Ki, jCijj the length of the edge Cij, CFL a given constant and kmax
Pðwk

hjCij ;nijÞ
is the

maximal eigenvalue of the matrix Pðwk
hjCij

; nijÞ defined in (8), where the maximum is taken over Cij. The

condition (50) is similar to the stability condition widely used in the finite volume method, obtained on
the basis of linearization and in analogy with a scalar problem, see [20, Section 7.3] or [24, Section 3.3.7].

For a detailed treatment of various approaches to the stability investigation, see also [42, Chapters 5 and 9].

In contrast to explicit schemes, for which we have to choose CFL < 1 [15], the semi-implicit scheme (39)

allows us to use CFL constant up to CFL � 6 for the linearization (34) and CFL � 100 for the linearization

(35), as is established by numerical experiments, see Section 5. Hence, the semi-implicit linearized schemes

allow us to choose much longer time step than the explicit scheme. Of course, in the solution of an unsteady

flow, it is necessary to make a compromise between the large CFL (allowing a long time step) and the

accuracy of the time discretization (cf. Section 5.2).
4. Implementation

The computations presented in this paper were performed on triangular grids with the aid of piecewise

linear approximations, i.e. with p ¼ 1 in (22). (Algorithmization of higher-degree approximations, i.e.

pP 2, will be treated separately in the framework of a package in preparation.)

The volume integrals in (27) are evaluated by the three point integration rule

Z
Ki

zðxÞdx � 1

3
jKij

X
j2SðiÞ

zðQijÞ; ð51Þ

where jKij denotes the area of Ki and Qij; j 2 SðiÞ, denotes the midpoint of the edge Cij. This integration rule

is exact for second degree polynomials. The integrals in (37) are evaluated by the two points Gauss

quadrature rule

Z
Cij

zdS � jCijj
2

zðQ1
ijÞ

�
þ zðQ2

ijÞ
�
; ð52Þ

where jCijj denotes the length of the edge Cij and Q1
ij and Q2

ij are integration points lying on Cij. Let Cij be
parameterized in the form

Cij ¼ x 2 R2; x



¼ cij þ sðd ij � cijÞ; s 2 ½0; 1�
�
; ð53Þ

where cij and d ij are endpoints of Cij. Then

Q1
ij ¼ cij þ 1

�
�

ffiffiffi
3

p
=3

�
ðd ij � cijÞ=2;

Q2
ij ¼ cij þ 1

�
þ

ffiffiffi
3

p
=3

�
ðd ij � cijÞ=2:

ð54Þ

The approximation (52) is exact for polynomials of the third degree. As we see, for each edge

Cij; j 2 SðiÞ; i 2 I , we have to evaluate the state vector w at three integration nodes: Qij, Q1
ij and Q2

ij, see
Fig. 1.

There are two natural possibilities how to choose the basis (45) of the space ½Sh�4. First, let us consider
basis functions associated with vertices of the triangulation Th. Then we can write

uimn ¼ ð/imdn1; . . . ;/imdn4Þ; /im 2 Sh; /imðPm0

i0 Þ ¼ dii0dmm0 ; m0 ¼ 1; 2; 3; i0 2 I ;

n ¼ 1; . . . ; 4; m ¼ 1; 2; 3; i 2 I ; ð55Þ



Fig. 1. Integration nodes Qij, Q1
ij and Q2

ij of the edge Cij.
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where Pm
i ;m ¼ 1; 2; 3, are vertices of the triangle Ki. The use of the basis (55) leads to a 7-point stencil for

every test function and hence, the matrix M has at most 28 nonzero elements in each row, see Fig. 2.

The second possibility is to consider basis functions, whose components are piecewise linear functions

associated with midpoints of edges of triangles:

uimn ¼ ð/imdn1; . . . ;/imdn4Þ; /im 2 Sh; /imðQm0

i0 Þ ¼ dii0dmm0 ; m0 ¼ 1; 2; 3; i0 2 I ;

n ¼ 1; . . . ; 4; m ¼ 1; 2; 3; i 2 I ; ð56Þ

where Qm
i ;m ¼ 1; 2; 3, are midpoints of edges of element Ki (of course, Qm

i ¼ Qij for some j 2 SðiÞ). The
choice (56) leads to a 12-points stencil for any test function and the matrix M has at most 48 nonzero

elements in each row, see Fig. 2.
Fig. 2. Seven point stencil of a node Pm
i (left) and twelve point stencil of a node Qm

i .
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As we see, the choice (55) produces significantly smaller number (about 57%) of nonzero elements than

the choice (56). This is caused by the fact that each function /im from (55) has a zero trace along one edge of

Ki and, moreover, for the evaluation of w at Q1
ij and Q2

ij only the values of w at endpoints of Cij are used (not
the value at the third vertex of Ki, see Fig. 2).

The linear system (47) is solved by the GMRES method [34], in which the vector ak is taken as an

initial approximation of akþ1. Since we solve a time dependent problem, the vectors ak and akþ1 are

close to each other and, therefore, only few GMRES iterations at each time step are necessary (see

Table 3). This is the reason that GMRES method can be used without any preconditioning. The

computational cost for the preparation of matrices M and M (i.e. evaluation of boundary and volume

integrals) are approximately the same as the computational cost for the solution of (47) and (48),

respectively.
Condition (50) guarantees the stability of the scheme with CFL 	 1. On the other hand, the compu-

tations start often from nonphysical data in the initial condition (5) (for example, we choose, w0ðxÞ as a
constant vector for all x 2 X). Consequently, it is suitable to start the computational process with a smaller

CFL-number (in order to avoid physically unacceptable situations, as, for example, negative pressure) and

then, step by step to increase CFL. Namely, in our computations we put

CFLðtÞ � CFL � ðCFL � 1Þ expð�ctÞ; ð57Þ

where CFLðtÞ is the CFL-number used in (50) at time t, CFL 	 1 is a chosen fixed value and c ¼ 0:2.
Relation (57) implies that we start with CFLð0Þ ¼ 1 and CFLðtÞ grows up to CFL fast.

Numerical experiments show (see, e.g. [2,3,15,27]) that in order to obtain a physically admissible nu-

merical solution, the use of superparametric finite elements is required. This means that the elements K
adjacent to a curved boundary have to be approximated by elements ~K which are images of a reference

element K̂ in a polynomial mapping f : K̂!ontoK having a higher degree than the degree of functions from the

space Sh. Namely, in our case of linear finite elements, it is sufficient to employ a bilinear mapping f, see
[15].

If the sought solution contains discontinuities (shock waves or contact discontinuities), then overshoots

and undershoots appear in the DGFE solution near the discontinuities. To avoid this phenomenon, it is

necessary to decrease the order of accuracy of the method choosing p ¼ 0 in the vicinity of the disconti-

nuities. One possibility, which is quite reliable, is to use the automatic adaptive limiting of order of accuracy
proposed in [18]. Its implementation to schemes (39) and (40) is quite easy.
5. Numerical examples

In this section we present the solution of some test problems demonstrating the accuracy and efficiency

of the proposed methods. We use the Euler equations written in the dimensionless form which is formally

the same as (1).
5.1. Ringleb flow

In order to illustrate the accuracy of the schemes and to show that large CFL-numbers can be used, we

test the schemes on the Ringleb flow problem. In this test case an analytical smooth steady-state solution of

the Euler equations was obtained with the aid of the ‘‘hodograph method’’, see [8]. This problem represents

a transonic channel flow, which is mostly subsonic, with a small supersonic region near the right-hand side

wall, as shown in Fig. 3. Our aim is to obtain the approximate DG steady-state solution and compare it
with the analytical one. On both walls we prescribed the impermeability condition v � n ¼ 0 where n denotes



Fig. 3. Geometry for Ringleb flow problem with marked supersonic region.
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the outer normal to oX. On the inflow and outflow parts of the boundary we prescribe the exact solution.
As an initial condition (5) we have chosen a constant vector w0 ¼ ð0:5; 0; 0; 0:5Þ.

The steady-state solution is achieved by a time stabilization method for ‘‘t ! 1’’ with the aid of the

forward Euler time discretization and the semi-implicit method (39) using linearizations (34) and (35) of

fluxes. The stopping criterion is given by

max 1;
1

sk

� �
qkþ1
h



 � qk
h




L1ðXÞ 6TOL; ð58Þ

where qkþ1
h and qk

h denote the density at time levels tkþ1 and tk, respectively, sk ¼ tkþ1 � tk and TOL is a given

tolerance. We put TOL ¼ 10�6 for computations presented in this paper. For this case the final physical

time was about t � 70. Since we seek only steady-state solution it is sufficient to use scheme (39).

The goal of our numerical experiments is to establish the order of accuracy and to compare the efficiency

(CPU time) of the presented methods. The computations are performed for four triangular grids

Thl ; l ¼ 1; . . . ; 4, having 5� 10, 10� 20, 20� 40 and 40� 80 vertices, see Fig. 4. Since the corresponding
isolines of Mach number obtained by all mentioned methods are identical, we show only results obtained

by the semi-implicit scheme with the linearization (35), which are viewed on Fig. 5. We observe a very

smooth resolution although the discontinuous approximation was employed. Table 1 shows the compu-

tational errors eh for explicit as well as semi-implicit methods, defined by

eh � kwh � wk½L2ðXhÞ�4 ; ð59Þ

where w is the exact solution of the Ringleb flow problem and wh is its numerical approximation on a mesh

Th. Table 1 also contains the experimental order of convergence given by

al ¼
log ehl=ehl�1

� �
log hl=hl�1ð Þ ; l ¼ 2; . . . ; 4; ð60Þ



Fig. 4. Grids used for the Ringleb flow problem with 5� 10, 10� 20, 20� 40 and 40� 80 vertices.
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where hl is the mesh size of Thl and ehl is the corresponding computational error achieved on this mesh. All

methods have the experimental order of convergence equal to 2, which corresponds to optimal approxi-

mation properties of linear finite elements.

Table 2 compares the number of time steps and CPU time measured in seconds for all three methods.
The number of time steps necessary for the time stabilization satisfying the criterion (58) is about 10 times

and 100 times smaller for semi-implicit method with (34) and (35) than for the explicit one, respectively.

This corresponds to the choice of the CFL-number in the stability condition (50): CFL¼ 0.6 for the for-

ward Euler scheme, whereas CFL¼ 6 and CFL¼ 100 for the semi-implicit methods using (34) and (35),

respectively, (see Section 3.4). The GMRES solution of system (47) needs some additional computational

costs, but Table 2 shows that the total CPU-time is significantly smaller for semi-implicit schemes. (The

computation was performed on PC Intel P4, 2.4 GHz.)

5.2. Vortex propagation

We consider the propagation of a vortex in compressible inviscid flow, analyzed numerically in [35]. The

computational domain is taken as ½0; 10� � ½0; 10�, extended periodically in both directions. The mean flow

is �q ¼ 1, �p ¼ 1 and �v ¼ ð1; 1Þ (diagonal flow). To this mean flow we add an isentropic vortex, i.e. pertur-

bation in v and the temperature h ¼ p=q, but no perturbation in the entropy g ¼ p=qc:



Fig. 5. Ringleb flow problem: computed isolines of Mach number obtained by the semi-implicit scheme on grids with 5� 10, 10� 20,

20� 40 and 40� 80 vertices.

Table 1

Computational errors in L2-norm and corresponding experimental order of accuracy for explicit and semi-implicit methods

Mesh Method

Explicit Semi-implicit + (34) Semi-implicit + (35)

eh al eh al eh al

5� 10 7.85E)03 – 7.40E)03 – 7.81E)03 –

10� 20 1.51E)03 2.05 1.45E)03 2.03 1.51E)03 2.05

20� 40 3.41E)04 2.01 3.30E)04 2.00 3.39E)04 2.01

40� 80 7.86E)05 2.04 7.71E)05 2.03 7.85E)05 2.04
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dv ¼ �

2p
eð1�r2Þ=2ð��x2;�x1Þ; dh ¼ �ðc� 1Þ�2

8cp2
e1�r2 ; dg ¼ 0; ð61Þ

where ð��x2;�x1Þ ¼ ðx1 � 5; x2 � 5Þ, r2 ¼ �x21 þ �x22, and the vortex strength � ¼ 5. The perturbations dq and dp
are obtained from the above relations.

It is clear that the exact solution of the Euler equations with the above initial conditions

qðx; 0Þ ¼ �qþ dq; vðx; 0Þ ¼ �vþ dv; pðx; 0Þ ¼ �p þ dp; ð62Þ



Table 2

Number of time steps (# steps) and CPU time for explicit and semi-implicit methods

Mesh Method

Explicit Semi-implicit + (34) Semi-implicit + (35)

# steps CPU (s) # steps CPU (s) # steps CPU (s)

5� 10 7855 17.3 722 3.2 74 0.6

10� 20 22909 136.0 1820 36.9 166 6.7

20� 40 51963 1046.3 4826 376.9 561 126.7

40� 80 116364 8565.1 10872 3666.4 1262 905.6

Fig. 6. Vortex propagation: triangular mesh having 9228 elements (left) and Mach number isolines at t ¼ 0 (right).
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and periodic boundary conditions is just the passive convection of the vortex with the mean velocity. An

unstructured grid having 9228 triangles was used, see Fig. 6. The simulation was performed with the aid of
the two-step scheme (40) until t ¼ 100 (10 periods in time). If we compare the initial condition in Fig. 6 with

the results from Fig. 7, we see that the form of the vortex is nearly unchanged after a very long time in-
Fig. 7. Vortex propagation: Mach number isolines at t ¼ 50 (left) and at t ¼ 100 (right).



Table 3

Vortex propagation: number of GMRES iterations for some time levels

Time step t # of GMRES iterations

1 0.0021 17

25 0.0551 12

50 0.1088 11

500 1.1236 11

1000 2.4299 12

3264 10.000 14

5833 20.000 14
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terval, which indicates a very good quality of the DGFE solution. Table 3 show the number of GMRES

interations in some time steps.

In order to demonstrate the efficiency of the method, we also solved the vortex propagation with the aid

of an explicit time discretization (second order Runge–Kutta scheme). The explicit method gives the

identical solution as the semi-implicit one and therefore we do not present it here. Table 4 compares the

chosen CFL number in (50), number of time steps and CPU time for the semi-implicit and explicit schemes

necessary for reaching time t ¼ 100. The CFL-number was chosen smaller than that one for the Ringleb
flow problem, because now we solve a time dependent problem and have to guarantee not only the stability,

but also the accuracy of the method. We observe that the length of the time steps is ten times larger for the

semi-implicit scheme, but the computational cost for the realization of one semi-implicit time step is ap-

proximately five times higher than for the explicit time step. Therefore, the total CPU-time for semi-implicit

scheme is two times smaller than for the explicit one.

5.3. GAMM channel – unsteady flow

Now let us consider a transonic flow through the GAMM channel (10% circular bump). This is a well-

known benchmark for steady-state simulation with inlet Mach numberMin ¼ 0:67. We take the steady-state

solution as an initial condition and prescribe a periodical perturbation of the pressure on the outlet part of

the channel given by
Table 4

Vortex propagation: comparison of the semi-implicit and explicit schemes

Method CFL-number # time steps CPU time

Semi-implicit (40) 2.0 24796 23843

Explicit 0.2 247361 40895

Fig. 8. GAMM channel: adaptively refined mesh having 1930 elements (left) and Mach number isolines at t ¼ 0 (right).



Fig. 9. GAMM channel: Mach number isolines at t ¼ 7 (left) and t ¼ 8 (right).

Fig. 10. GAMM channel: Mach number isolines at t ¼ 9 (left) and t ¼ 10 (right).
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p ¼ �pð1þ e sinð2pktÞÞ; ð63Þ

where �p ¼ 1:59119 is the value corresponding to the steady state, e ¼ 0:02 and k ¼ 1=2.
The simulation was performed until t ¼ 10 on an unstructured mesh (Fig. 8, left) adaptively refined by

the anisotropic mesh adaptation algorithm, see [13]. We use the two-step scheme (40) and put CFL ¼ 5 in

(50). Fig. 8, (right) shows Mach number isolines for t ¼ 0 (stationary flow). Figs. 9 and 10 show Mach

number isolines at t ¼ 7; 8; 9 and 10. We observe an interesting oscillatory behaviour of the solution.
6. Conclusion

We present efficient higher order numerical schemes for the solution of the compressible Euler equations

using the discontinuous Galerkin finite element space discretization. In order to avoid a time step restriction

known from explicit methods, semi-implicit numerical schemes were developed. The main tool is the lin-

earization of the flux and numerical flux, leading to the solution of a linear algebraic system at each time

level. In our schemes the Vijayasundaram numerical flux is used, which is suitable for a simple linearization.

An important issue is the linearization of boundary conditions. We introduce here two versions – fully

explicit and implicit. First and second order time discretization is applied. Our further goal was the in-
vestigation of the accuracy and efficiency of the developed schemes. Numerical experiments performed for

the Ringleb flow problem confirm that the order of accuracy of discontinuous piecewise linear approxi-

mations (for semi-implicit as well as explicit schemes) is equal to 2. Thus, the order of accuracy is optimal.

Moreover, the semi-implicit schemes allow us to use much larger CFL-number than the explicit one. This

results among other in a strong reduction of the computer time necessary for obtaining a steady-state

solution of the Euler equations with the use of the time stabilization for ‘‘t ! 1’’ and also the reduction of

the computer time in the solution of unsteady flows, as was shown on the solution of more challenging

nonstationary Euler flows. Namely, the solution of the vortex propagation and the flow through the
GAMM channel with prescribed unsteady pressure on the outlet is presented. These problems show the
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applicability, efficiency and accuracy of the developed schemes. Future work will be concentrated on the

development of a general package using higher-degree polynomial approximations and on the extension to

3D problems and the solution of compressible viscous flow, combining the DGFEM with anisotropic mesh
adaptation.
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